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Abstract
Heat conduction in one-dimensional (1D) scattering models is studied based on
numerical simulations and an analytical S-matrix method which is developed
in the mesoscopic electronic transport theory. In the models, it is found that the
heat conduction is closely related to a spatial correlation of particle motions:
if the correlation exists, the heat conduction is abnormal; otherwise (i.e. if the
correlation vanishes), the heat conduction is normal. The randomization of
scatterers in the models is found to determine the existence of correlation. Our
simulations are in agreement with the theoretical expectations. We generalize
the result and study the property of heat conduction by directly analysing the
correlation in general 1D dynamical systems.

PACS numbers: 44.10.+i, 05.45.−a, 05.60.−k, 05.70.Ln

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of heat conduction in one-dimensional (1D) systems is an interesting subject in
the context of nonequilibrium statistical physics, which has been attracting much attention in
recent years [1]. Most works aim at understanding the dynamical properties of heat transport
in 1D systems [2–10]. Many modelling systems have been carefully studied and their thermal
conductivities and temperature profiles have been calculated; however, the key dynamical
properties of normal conduction are still unknown. Generally, normal heat conduction is
specified by a diffuse-type motion, hence the investigation of random behaviour of systems
is necessary. It is well known that chaos can generate the required random behaviour in
some systems. For example, thermal conductivity is characterized normal in the ding-a-ling
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model [2] and the Lorentz gas channels [6], due to their dynamical instability. However,
heat conduction is still considered abnormal in other systems, such as Fermi–Pasta–Ulam
(FPU) model [3] in spite of their dynamical instability. Recently, Li et al [9] studied three
models with the same zero-Lyapunov exponents (i.e. these models are dynamically stable)
and found that heat conduction can be either normal or abnormal depending on details of
the models. Consequently, they draw such a surprising conclusion that there is no direct
connection between the dynamical instability and normal heat conduction.

Among all researches of heat conduction in 1D systems, most works are short-time
numerical simulations of small systems. It is very difficult to get definite conclusions on the
macroscopic transport properties of these nonlinear systems. A general conclusion that the
momentum conservation systems with non-zero pressure have anomalous conductivity had
been proved by Prosen and Campbell [11]. Unfortunately, the proof is criticized to be wrong
by Narayan and Ramaswamy [12]. Until now, many current numerical results are still very
confusing. For example, in the diatomic gas models, the heat conduction was first thought
as normal by Jackson et al [13] and was in agreement with a recent work of Garrido et al
[14], but it was against the numerical results by Hatano [5], Dhar [8], Savin et al [15] and
Grassberger et al [10]. It is necessary to study generally the required dynamical characteristics
that guarantee normal heat conduction.

In this paper, we try to relate the normal heat conduction of 1D systems to a spatial
correlation along the systems. By considering a 1D system with N scatterers and non-
interacting classic particles, we find that the classic model can be theoretically treated using
S-matrix theory [16] developed in the mesoscopic electronic transport theory (METT). In
METT, if the scattering is random, electronic transport will be incoherent, electronic phase
correlation at the two ends of a 1D chain will be absent and eventually Ohm’s law will be
observed. Similarly, in our model, defining a ‘phase’ correlation, we find that normal heat
conduction is characterized by the breaking of the phase correlation which is ascribed to the
randomization of the scatterers. We generalize the finding to other 1D systems: the absence
of a spatial correlation along a 1D system implies a normal heat conduction. The supposition
is supported by some physical considerations and some previous theoretical and numerical
researches. From the view of breaking the spatial correlation, in 1D systems, it is easy to know
that other kinds of randomness characteristics are of equal value with dynamical instabilities.
Therefore, we conclude that dynamical instability is not necessary to get normal heat transport
only while other kinds of randomness effects exist. The result is helpful in explaining the
surprising finding of Li et al [9] about the relation between the normal heat conduction and
the dynamical instabilities. Some related discussions are given in section 4. In section 3, the
results of numerical simulations are presented. We begin, in section 2, with a description of
our models and some theoretical treatment.

2. Theory

2.1. Model and scattering theory

Consider a 1D classical chain with N scatterers sk, (k = 1, . . . , N) and non-interacting
particles, which are elastically transmitted or reflected at these scatterers, we place this chain
between two heat baths. Without loss of generality, the length of chain (L) is set as N. If
the transmission coefficient (tk) of each scatterer is a number between 0 and 1, it is a typical
random walk process, hence heat conduction is normal and independent of the kind of heat
baths. However, here we suppose that scatterers periodically turn on or off on time, so
particles will completely transmit through a scatterer in some time segments, but reflect at the
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scatterer in the other time segments. So the transmission coefficients, tk(φ), are function of
time φ. Here, we set tk(φ) as a period function with the period 1 and the average transmit
coefficient 1/2. If there are different initial time shifts δk for different scatterers, we have
tk(φ) = t (φ − δk), and

t (φ) =
{

1, 0 � φ < 1/2
0, 1/2 � φ < 1.

(1)

The term φ and δk are thought as ‘phases’. Another parameter of the kth scatterer is its
positions xk . {δk} and {xk} will determine the properties of the model. Actually, the model is
very similar to the Lorentz channel model [6] or the Ehrenfest gas channel model [9].

We define the average of the particle current density J (x, v, t) at position x and velocity
v as

j (x, v, φ; n) = 1

M

M−1∑
m=0

J (x, v, φ + m + n), (2)

where n,m are integer numbers M is a large integer number and 0 � φ < 1. In steady
state, j (x, v, φ; n) is independent of n, and is noted as j (x, v, φ). Due to the particle current
conservation, as x is between two nearest-neighbour scatterers, xk and xk+1, j (x, v, φ) can be
written as function of φ − x/v, thus we have,

j (x, v, φ)=
∑
m

j(k)
m (v) exp{2mπ i(x/v − φ)}, if xk < x < xk+1. (3)

The heat current density Ju(x) and temperature profile T (x) can be written as

Ju(x) = 1

2

∫ ∞

0
dv v2

[
j

(k)
0 (v) − j

(k)
0 (−v)

]
, (4)

and

T (x) =
∫ ∞

0 dv v
[
j

(k)
0 (v) + j

(k)
0 (−v)

]
∫ ∞

0 dv v−1
[
j

(k)
0 (v) + j

(k)
0 (−v)

] , (5)

respectively, while xk < x < xk+1.
On the basis of the properties of scatterers, we easily obtain the following scattering

formula: (
ĵ (k)(v)

ĵ (k−1)(−v)

)
=

(
t̂ (k)(v) r̂ ′(k)(v)

r̂(k)(v) t̂ ′(k)(v)

) (
ĵ (k−1)(v)

ĵ (k)(−v)

)
(6)

where ĵ (k)(v) is a vector with infinite components (j (k)
m , m is any integer number). t̂ , r̂ , t̂ ′(k) and

r̂ ′(k) are nothing but S-matrix elements, and each S-matrix element is an infinite-dimensional
matrix. For example, the element t (k)

mn of matrix t̂ (k) is a coefficient which the mode m at the
left transmits the scatterer k to mode n at the right,

t (k)
mn(v) = t (m−n) exp{−2π i(m − n)(xk/v − δk)}, (7)

where t (p) = ∫ 1
0 dφ t(φ) e2pπ iφ , is the pth Fourier’s expanded coefficient of transmission

function t (φ). Similarly, other matrices can be written as

r(k)
mn(v) = r

(m−n)
k exp[−2π i(m + n)xk/v],

t ′(k)
mn (v) = t (m−n) exp[−2π i(m − n)(xk/(−v) − δk)], (8)

r ′(k)
mn (v) = r

(m−n)
k exp[−2π i(m + n)xk/(−v)],

where r
(p)

k = (δp,0 − t (p)) exp(2pπ iδk).
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For whole N scatterers, we have(
ĵ (N)(v)

ĵ (0)(−v)

)
=

(
T̂ (v) R̂′(v)

R̂(v) T̂ ′(v)

)(
ĵ (0)(v)

ĵ (N)(−v)

)
(9)

where T̂ , R̂, T̂ ′ and R̂′ are whole transmitting and reflecting matrix of all scatterers from left
to right and from right to left, respectively. ĵ (0) and ĵ (N) correspond to the current densities at
the left and right ends, respectively.

Since the parameters of the system (xk and δk) determine the S-matrix, we study heat
conduction of models with different parameters. Without loss of generality, we set

δk = c ∗ R, (10)

xk = k − 0.5 + d ∗ (R − 0.5), (11)

where R is a random number uniformly distributed between 0 and 1, c and d are the magnitude
of disorder in scattering phases and positions, respectively. If both c and d are equal to zero,
it is a periodic scattering system, otherwise, it is a disordered system. For the latter, we can
consider two kinds of different disordered systems: (1) the dynamical random system (DRS),
where xk or δk are random in time, (2) the static random system (SRS), where random xk or δk

are fixed rather than depending on time in each realizations of system. We are interested in the
average properties of many realizations. DRS and SRS correspond to the phonon scattering
and impurity scattering in electronic transport, respectively. Obviously, the disorder of xk or
δk will induce some random phases in the S-matrix, it may affect the transport property of the
system.

The combined S-matrices of N scatterers can be easily written according to the well-
known rules generated in METT: it is written as a summation of many terms, where each term
is depicted by a ‘Feynman path’ [16]. For example, the combining transmitting matrix of any
two parts of scattering s(1) and s(2) is

t̂ (12) = t̂ (2)[I − r̂ ′(1)r̂ (2)]−1 t̂ (1),

= t̂ (2)[I + r̂ ′(1)r̂ (2) + · · ·]t̂ (1). (12)

Generally, we have Tmn(N) = ∑
P AP , where each AP is a complex number contributed from

path P which starts from mode n at the left end, to mode m at the right end. If tk(φ) of each
scatterer is independent of time φ, then there is only one mode, T = ∑

P0
AP0 , where P0 are

all the ‘Feynman’ paths with mode 0 for all scatterers. We easily obtain

T (N) =
(∑ 1 − ti

ti
+ 1

)−1

∼ t

N(1 − t) + t
. (13)

While N → ∞, we have T (N) → t
N(1−t)

, satisfying the Fourier law, which is the expectation
of the random walk process.

2.2. Heat baths

Before going on to the study of the transport properties of the model, we analyse the effects
of heat baths. Here, the temperatures of the left and right heat baths are noted as T1 and
T2, respectively. Many kinds of heat baths can be selected. For example, we can choose
complete-reflecting heat baths: as a particle hits a heat bath, it will be reflected with a
velocity distribution PT (v), where T is the temperature of the heat bath. PT (v) can be of
the Maxwellian distribution, PT (v) = v/T exp(−v2/2T ), or of a single velocity distribution,
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PT (v) = δ(v − √
T ), or other forms. In this case, we have complete-reflecting conditions at

the boundaries:

j l
m(v) = J l

mPT1(v) (14)

j r
m(−v) = J r

mPT2(v), (15)

where v is larger than 0, j l
m(v) or j r

m(−v) corresponds to the currents entering into the
1D system from the left or right heat bath (x = 0/L), which has a different phase from
j 0
m(v)

/
jN
m (−v) which are used in equation (9). J l

m = ∫ ∞
0 dv j l

m(−v) and J r
m = ∫ ∞

0 dv j r
m(v).

Actually, J l
m and J r

m are the Fourier expanded coefficients of the current densities J l(φ) (at
the left end, x = 0) and J r(φ) (at the right end, x = L) of 1D chain, respectively. From
equation (9), we easily obtain,(

ĵ r
m(v)

ĵ l
m(−v)

)
=

(
T̃ mn(v) R̃′

mn(v)

Rmn(v) T̃ ′
mn(v)

) (
ĵ l

n(v)

ĵ r
n(−v)

)
(16)

where there are some phase differences between the matrix elements and the original S-matrix
elements in equation (9),

T̃ mn(v) = exp(2mπ iL/v)Tmn(v)

T̃ ′
mn(v) = T ′

mn exp(2nπ iL/v) (17)

R̃′
mn(v) = exp(2mπ iL/v)R′

mn exp(2nπ iL/v).

Then, we know J l
m and J r

m are not arbitrary, but satisfy the following equation:(
〈Rmn〉1 − δmn 〈T̃ ′

mn〉2

〈T̃ mn〉1 〈R̃′
mn〉2 − δmn

) (
J l

n

J r
n

)
= 0 (18)

where 〈fmn〉i , (i = 1, or 2 ), means the average value of fmn(v) under the velocity distribution
function PTi

(v). The physical meaning of equation (18) will be easily understood. In fact, we
can treat the right boundary as (N + 1)th scatterer (complete reflecting), J l

m must satisfy the
linear equation, (RNr − I )J l = 0, where RNr is the total reflecting matrix of all N scatterers
as well as the right heat bath. From equation (18), we have

RNr = 〈R〉1 + 〈T̃ ′〉2[I − 〈R̃′〉2]−1〈T̃ 〉1. (19)

Since

[I − R]−1 = I + R + RR + · · · , (20)

we find that the result is nothing but the summation of ‘Feynman path’. Similarly, we also
have the formula of RlN and equation (RlN −I )J r = 0. If there is only one linear-independent
solution of the equation, we will get a unique steady state (a free constant J l

0 is decided by the
particle density and average temperature of system).

However, the asymptotic N dependence of the heat current is only determined by the N
dependence of transmission coefficient |T̂ |, which is independent of the details of heat baths.
In this paper, we only consider a simpler case, replacing with the complete-reflecting heat
baths: particles uniformly enter into the system from two heat baths at time (φ) with the
single velocity distribution δ(v −√

T ), therefore the heat current is simply proportional to the
transmission coefficient T00. When calculating T (x), we choose another uniform incoming
current from the right heat bath at the same time, making the total particle current zero.
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2.3. Phase correlation

It is well established that, if the scattering is random, the contributions from different Feynman
paths are incoherent in electronic transport, therefore, we can find Ohm’s law and normal
electric conductivity. But if there are some long range correlations between scatterers, the
electronic phase-relaxation length may be larger than the length of the system, the transport
will be coherent and we can find anomalous electric conductivity. So the existence of the
phase correlation between electrons at the two ends can be used to judge whether the transport
is coherent or not, hence whether the conductivity is abnormal or normal. Comparing the
results, we expect a similar relationship between heat conduction and a long range correlation
of particles in 1D systems. We also expect the random characteristic of scatterers to be
responsible for the correlations.

For any incoming particle current from the left heat bath, J l
+(φ), we have the transmit

current density at the right boundary J r
+ (ψ) = ∫

T (ψ, φ)J l
+(φ) dφ, where T (ψ, φ) is the

transmit function,

T (ψ, φ) =
∑
mn

exp(−2mπ iψ)Tmn exp(2nπ iφ). (21)

Similarly, the reflecting function is R(ψ, φ). Since for any φ,
∫

[T (ψ, φ) + R(ψ, φ)] dψ = 1,
so R0n = δ0n − T0n.

The probability that we observe a current with phase ψ at the right end and a current with
φ at the left end is W2(ψ,L;φ, 0) = T (ψ, φ)J l

+(φ). We define a normalized two-point current
distribution function as f2(ψ, φ) = W2(ψ,N;φ, 0)/A, where A is a normalized constant,

A =
∫

W2(ψ,L;φ, 0) dφ dψ =
∫

J r
+ (ψ) dψ. (22)

The left and right normalized distributions are

fl(φ) =
∫

f2(ψ, φ) dψ, (23)

and

fr(ψ) =
∫

f2(ψ, φ) dφ, (24)

respectively.
On the basis of these distributions, we define a motion correlation of particles at two ends

of the 1D chain as

D = 〈φψ〉2 − 〈φ〉l〈ψ〉r
σlσr

, (25)

where 〈· · ·〉i (i = 2, l or r) means the average value under the distribution functions f2(ψ, φ),

fr(ψ) and fl(φ), respectively. σl/r =
√(〈φ2〉l/r − 〈φ〉2

l/r

)
is the width of the current

distribution at the left/right end. Hence, D = 0 implies the breaking of the correlation
and T (ψ, φ) = F(ψ)G(φ) (or Tmn = FmGn). Here, D corresponds to the electronic phase
correlation at both ends of 1D electronic transport system, and the particle velocity plays the
role of wavevector of the electron.

2.4. Theoretical results

Based on the rules of the ‘Feynman’ paths on scattering theory, the transmission matrix Tmn

can be written as

Tmn =
∑
pq

t (N)
mp t(1)

qn Bpq(N), (26)
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(a) (b)

Figure 1. The particle current distribution J r (φ) at the right end in DRS with random phases.
(a) J r (φ) of systems with different N are identical to each other, where c = 0.8. (b) The distribution
J r (φ) of DRS with different c. c = 0 means a periodic system.

where t (N) and t (1) are the transmission matrix of the scatterer N and the scatterer 1,
respectively. Bpq(N) is the sum of all ‘Feynman’ paths which start from mode q of the
scatterer 1, end to mode p of the scatterer N . Expanding Bpq(N) in large N, the lead term is
noted as αpq/N

γ , therefore we have the first result that the asymptotic N dependence of Tmn

is independent of m and n,

Tmn = T (N)hmn, (27)

where T (N) ∼ 1/Nγ , is a simple notation of T00 and hmn is independent of N. If the correlation
is absent, Tmn can be written as T (N)fmgn.

For DRS, due to the random time-dependent positions/phase of the scatterers, the
contributions from different Feynman paths are not coherent with each other, so they can
be first averaged in time, then be summed up. This indicates that only zero-mode contribute
to the total transmission coefficient, so the heat conduction shall be normal. We also easily
know that the correlation is absent in DRS due to the incoherent Feynman contribution.

3. Numerical simulation

In this section, by using a uniform input current with single velocity v1 = √
T1 from the

left end, we numerically simulate the transmit coefficient T (N), the distribution function
fr(ψ), fl(φ) and the temperature profile T (x) in different systems. First, we find that both
fr(ψ) and fl(ψ) are independent of N for all models including the periodic scattering system,
DRS and SRS with the same disordered magnitude (c and d). The results verify very well
our theoretical expectations in equation (27) and indicate that hmn is only dependent on the
disordered magnitude. As c (or d) increases, fr(ψ) and fl(φ) become flatter, but they are
not uniform even though the disordered magnitudes arrive at their maximum value, 1. For
example, the results in DRS are shown in figure 1, where J r(φ) is the un-normalized current
distribution function at the right end. Then, we show the temperature profiles T (X/N) of DRS
in figure 2(a), which are found to be independent of N but dependent on the disorder magnitude
c (or d). It indicates that dT /dX is proportional to 1/N . The heat current Ju ∼ 1/Nγ is
shown in figure 2(b), and fitted γ ≈ 0.9989 ± 0.0045. Therefore, the heat conduction is
normal in DRS with disordered scattering phases, which verifies our theoretical expectation.
In this case, our obtained spatial correlation D is very small but with the same-order statistic
error. To obtain a better correlation estimation, we used the non-uniform input currents J l

+(φ)

with different distributions and found the right-end distribution functions f r(ψ) independent
of the selection of J l

+(φ) (not shown). This indicates that the transmission function T (ψ, φ)
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(a) (b)

Figure 2. The results of DRSs with random phase. (a) Temperature profile, where x = X/N . For
every c, we show four temperature profiles, the corresponding chain lengths are 32, 64, 128 and
256, respectively. They are almost identical to each other. (b) Heat current J versus N.

(a) (b)

Figure 3. The results of SRSs with random phase and periodic systems. (a) Temperature profile
of four chains, where c = 0.8. (b) NJu versus N of SRS and periodic system. The results of SRS
with c = 0.2 (squares), c = 0.4 (circles), c = 0.6 (triangles) and c = 0.8 (diamonds) of the left
and bottom axes. The results of periodic systems (stars) of the right and top axes.

can be written as F(ψ)G(φ), hence D = 0. For DRS with disordered scattering positions,
the obtained results are similar to that of DRS with disordered phases.

We also numerically simulate the heat conduction of SRS. Since the position disordered
system is similar to the phase disordered system, we only show the results of the latter. In
our calculations, the temperature and heat flux are averaged over 1000 disordered realizations.
There are not obvious differences using more realizations to calculate these average values.
The obtained temperature profile T (x) and the N dependence of Ju in SRS are similar as
that in DRS, but the fitted γ ≈ 1.19 from four SRS systems with N = 32, 64, 128 and 256,
respectively. It is slightly far from the normal thermal conduction. However, the deviations
are due to the limiting chain length N in our simulation. In figure 3(b), we show the N
dependence of NJu. It is easily seen that NJu will arrive at a constant as N increases.
Obviously, the obtained larger fitted value of γ is ascribed to the adopted smaller N in our
simulation. From figure 5(a), we know the deviation originates from some very minor high-Ju

disordered realizations in small-N systems. In large-N systems, the realization distribution
of NJu is a Gaussian curve with N-independent centre value. Therefore, we conclude that
the heat conduction of SRS is normal. We calculated four systems with different disordered
magnitudes c = 0.2, 0.4, 0.6 and 0.8, respectively. The heat conduction of all systems are
found to be normal. Approximately, we numerically have Ju ≈ c/2N . For very small c, it
is difficult to numerically detect whether heat conduction is normal, since very large systems
need to be simulated. In our simulations, it is found that the fluctuation of D similarly decreases
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(a) (b)

Figure 4. The correlation of SRSs with random phase. (a) The correlation distribution of different
samples, where N = 32 and c = 0.2. (b) The fluctuation of correlation 〈D2〉 versus N. We show
the results of three SRSs with different c (c = 0.2, 0.5 and 0.8), they are almost indistinguishable.
The solid line is the best fit one.

(a) (b)

Figure 5. The distribution of heat flux Ju and correlation D of 1000 different disordered
realizations. The data of three SRSs with N = 64 (squares), N = 128 (circles) and N = 256
(triangles) are shown, respectively. (a) The distribution of NJu with c = 0.8. The data of
three systems with different N show a Gaussian profile with same centre value, but for small-N
systems, there is very low tail in the high-Ju range, which cause a small deviation from normal
heat conduction in small-N systems (see text). The solid line is a Gaussian curve fitted from the
data of N = 256. In the inset of (a), similar results of SRSs with c = 0.2 in centre zone are
shown. (b) The distribution of correlation D with c = 0.8. Solid lines are the fitted Gaussian
curves. It is clearly found that the width of correlation distribution decreases as N increases. Here,
the distributions in inset of (a) and (b) have been normalized.

as N increases for very different c. For comparison, in figure 3(b), we also show Ju of periodic
scattering systems with N = 128, 256, 512 and 1024, respectively. The found NJu obviously
decreases as N increases, so the heat conduction of periodic systems is abnormal. To detect the
relation between heat conduction and phase spatial correlation D, we calculate the correlation
of SRS. Thousand disordered realizations are used to get the distribution of the correlation.
In figure 4(a), we show the correlation D of 300 disordered samples of SRS with N = 32
and c = 0.2. D is found to fluctuate largely around zero point. However, the fluctuation
decreases as N increases, 〈D2〉 = N−0.42 is shown in figure 4(b). From figure 5(b), we find
the D is a wonderful Gaussian curve with a decreasing width as N increases. It indicates that
D → 0 even in single disordered realization of SRS while N → ∞. On the other hand, as our
expectation, the numerical results show the correlation of periodic system is non-zero. These
results strongly support the conclusion that the normal heat conduction is characterized by the
breaking of the spatial correlation.
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4. Summary

Defining a spatial correlation in 1D scattering systems, we have connected the property of the
heat transport with a spatial correlation. In randomness scattering systems, the correlation is
broken, as is our expectation, where the heat conduction is found to be normal. In contrast,
in periodic scattering systems, the correlation exists even in the thermodynamic limit and the
heat conduction is abnormal. Our classic scattering systems can be compared with quantum
systems studied in electronic transport. The S-matrix theory developed in the latter can be
used very well in the former. By drawing an analogy between the two kinds of systems,
we suggest that the normal heat conduction be characterized by the breaking of the spatial
correlation. On the basis of the S-matrix theory, we directly prove the relation between the
correlation and heat conduction in DRS. For SRS and periodic systems, the numerical results
support our conclusion. Considering to exist a distribution of the particle’s spent time to
transport through the chain in our studied 1D system, the spatial correlation might be related
to the current–current time correlation function. Thus, our results may be related to the Kubo
formula of heat conduction.

A noted fact is that our model is very similar to the Ehrenfest gas channel [9]. In the latter,
the channel is quasi-1D systems with a small transverse coordinate (the height of the channel).
Actually, the height corresponds to the ‘phase’ in our models, a similar scattering theory can
be derived. In the Ehrenfest channel, the surprising declaration of Li et al [9], where there is
no direct connection between chaos and normal thermal conduction, can be easily understood
from our results. Actually, their found normal heat conduction should be ascribed to their
adopted randomization of the scatterers. In their model, the randomness scattering plays the
role of chaos in other models (such as the Lorentz gas channels) to guarantee the normal heat
conduction. Therefore, the relation between chaos and normal thermal conduction is only
while other kinds of randomness effects exist, dynamical instability is not necessary to get
normal heat transport.

The obtained relation between heat conduction and the spatial correlation may be universal
in general 1D systems by comparing it with quantum transport. It is possible to study properties
of heat conduction by detecting the spatial correlation. The correlation might be known by
analysing dynamical characteristics of systems. For example, we consider a variant of ding-a-
dong model, where its even-numbered particles are oscillatedly coupled to each other, rather
than coupled with its individual lattice site in the initial model [2]. Since there exist some
long-wave modes in the model, the motion correlation is present even in the thermodynamic
limit, then we can directly expect that its thermal conductivity is abnormal. For general 1D
systems, an important question is how to define a suitable correlation and judge directly its
existence from the characteristic of systems. We wish to study these problems in the future.
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